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Abstract

This paper considers the numerical computation of the photonic band structure of periodic materials such as pho-

tonic crystals. This calculation involves the solution of a Hermitian nonlinear eigenvalue problem. Numerical methods

for nonlinear eigenvalue problems are usually based on Newton�s method or are extensions of techniques for the stand-

ard eigenvalue problem. We present a new variation on existing methods which has its derivation in methods for bifur-

cation problems, where bordered matrices are used to compute critical points in singular systems. This new approach

has several advantages over the current methods. First, in our numerical calculations the new variation is more robust

than existing techniques, having a larger domain of convergence. Second, the linear systems remain Hermitian and are

nonsingular as the method converges. Third, the approach provides an elegant and efficient way of both thinking about

the problem and organising the computer solution so that only one linear system needs to be factorised at each stage in

the solution process. Finally, first- and higher-order derivatives are calculated as a natural extension of the basic

method, and this has advantages in the electromagnetic problem discussed here, where the band structure is plotted

as a set of paths in the (x,k) plane.
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1. Introduction

We consider a class of problems which arises when a wave moves through a structure with periodic inho-

mogeneities. For any wave moving through a periodic material, there exists a relationship between the

wave�s frequency and its spatial periodicity known as a dispersion relation. The set of all dispersion curves
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is known as the band structure of the medium. The nature of the band structure is most important when

calculating the properties of waveguides and also of photonic crystals, where waves possess many interest-

ing characteristics, such as anomolous dispersion, negative refraction, and photonic band-gaps.

There are many different methods available for calculating dispersion relations in the literature, however,

most share some common characteristics. Typically a propagating wave is expanded in terms of some spe-
cially chosen basis functions, with the expansion coefficients grouped into a vector of unknowns x. The

application of boundary conditions then reduces the problem to an eigenvalue problem
Aðx; kblochÞx ¼ 0; ð1Þ
where A(x,kbloch) is a Hermitian matrix whose coefficients depend not only on the frequency and the wave-

vector but also on the material properties of the structure under consideration. The eigenvectors x represent

the modes (the eigenmodes) which are allowed to propagate in the structure, as represented in the appro-
priate basis.

These problems can then be classified as linear and nonlinear approaches, according to the form of the

eigenvalue problem which results from the application of the method. The linear approaches include finite

difference methods and finite element methods [1,2]. Among the nonlinear approaches are plane-wave

expansions, transfer matrix methods and approaches based on integral equations [4–6]. The linear methods

are characterized by very large matrices and hence put heavy demands on computing power, however, the

matrices involved have the advantages of sparsity and of a known structure. The nonlinear methods by con-

trast typically involve the solution of relatively small, dense matrix systems. The disadvantage of these
systems is that they depend on the parameters (x,kbloch) in a complicated manner.

In this paper, we concentrate on ways of facilitating the solution of these nonlinear matrix problems.

Clearly the problem is equivalent to finding zeros of the determinant of A(x,kbloch), and if no zeros exist

for a given value of x then there exists a �photonic band-gap�, a region for which all propagation in the

material is critically damped. A näive approach then would be to use a multitude of successive matrix eval-

uations and to look for parameters for which the determinant is vanishingly small. This approach is expen-

sive in terms of computer time and also runs the risk of �missing� a mode. More sophisticated search

procedures can also be employed, notably numerical packages such as BRENT [7], and while procedures
such as these fare better they are not optimized for matrix problems, or for those which depend on more

than one parameter. A better approach is to use the techniques of matrix algebra, usually designed for lin-

ear problems, and adapt them to the new nonlinear situation. Such techniques were initiated by the early

work in [15,14], where the technique of Rayleigh quotient iteration for the standard eigenvalue problem for

a symmetric matrix was extended to the nonlinear case. These ideas were then extended in [13,12] using

ideas from Newton�s method for systems. More recently, in [16] the steps in the Newton�s method were

reorganised to provide the �residual correction method� for computing various species of nonlinear waves.

In [10], it was shown how high-order derivatives in nonlinear eigenvalue problems can be computed effi-
ciently, and in [11] the elegant idea of deriving a scalar function that has the same zeros as detA(x,kbloch)
is discussed. In this paper, we present a straightforward self-contained treatment of the idea in [11], appro-

priate for the computation of band diagrams and physical properties of photonic crystals. In addition we

introduce a variation of the numerical approach that retains the Hermitian character of the problem and is

more robust in our computations. This variation is justified using a simple determinant argument.

To demonstrate the methods discussed here, we consider the classical problem of a scalar electromag-

netic wave moving through a two-dimensional geometry of cylindrical inclusions. To solve this problem

we use a multipole method, which has the advantage that the resulting fields can be represented semi-
analytically, allowing the solution to be easily checked. The procedure, however, involves the solution

of a dense, complex-valued matrix problem of the type stated previously. The problem is therefore

one which is interesting physically and provides a challenging problem for nonlinear eigenvalue

techniques.



A. Spence, C. Poulton / Journal of Computational Physics 204 (2005) 65–81 67
It will be shown that the algorithms discussed here not only exhibit improvements in speed and robust-

ness, but also offer additional extra information: specifically, the eigenmodes and group velocities of the

wave emerge as a by-product of the solution process. In addition, a natural extension of the method means

that additional derivatives of the dispersion curves can be calculated in a straightforward manner.
2. Physical background to the problem

We consider first the problem depicted in Fig. 1, which depicts a transverse electromagnetic wave, of

either TE or TM polarization, propagating through a doubly periodic lattice of circular inclusions. This

is the classical problem of wave propagation in a photonic crystal, which is formulated in [9] and elsewhere.

The inclusions have a radius a, are separated by a distance d, and possess transport properties which are

different from the matrix material which surrounds them. The geometry of the array is represented by
the lattice vector Rp, where p ¼ ðmd; ndÞ 2 R2 is a multi-index which points to the centre of the pth cylinder.

Because the propagation is in-plane, we can represent the wave by a single scalar potential u(r,h), which
represents either the z-component of the magnetic field, if the wave happens to be TE polarized, or the

z-component of the electric field, for TM polarization.

Considering the steady-state situation, then within the matrix material the field u satisfies the Helmholtz

equation
ðDþ x2=c2Þu ¼ 0: ð2Þ

Here, x is the characteristic frequency of the wave, and c is the wave-speed within the material. Within the

inclusions themselves we have
ðDþ n2cx
2=c2Þuint ¼ 0; ð3Þ
where nc is the refractive index of the inclusions, relative to the surrounding material.

If we now assume that the material is strictly periodic then the scalar field u must obey the Bloch–

Floquet condition [8]
uðrþ RpÞ ¼ uðrÞeikbloch �Rp ; ð4Þ

where kbloch is the Bloch wavevector.
central cylinder

R p

unit cell

d

Fig. 1. The two-dimensional array of inclusions, through which the wave propagates.
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On the surface of every cylinder we can specify the appropriate boundary conditions; in this paper, we

consider an array of perfectly conducting cylinders surrounding by air, through which a TE-polarized mode

is propagating, although we note that this method is applicable to any combination of non-dispersive mate-

rials and for each polarization. In our chosen situation we can ignore the field interior to the cylinders and

specify a Neumann condition on the boundary of each cylinder:
Fig. 2

photon

using
ou
or

¼ 0 ð5Þ
for the exterior field.

The problem is now determined completely. For a given vector kbloch, the aim is to find values of x for

which u satisfies the relations given above. These solutions correspond to allowed propagating waves in the
material, and the function x(kbloch) is known as the dispersion relation for the medium.

According to the Bloch–Floquet theorem [8], the Bloch vector can take any value within the first �Bril-
louin zone�, that is, within the region [�p/d,p/d] · [�p/d,p/d]. All physical functions which depend on the

Bloch vector (such as the dispersion relation) will merely repeat themselves periodically outside this zone.

Furthermore, the symmetry of the lattice dictates further redundancy within the zone itself: for a square

array, only one octant is needed to map the zone entirely. This first irreducible segment is usually written

as being bounded by the three points C, M and X, as shown in Fig. 2.

Ideally one would like then to plot x as a function of kbloch for the entirety of the irreducible segment.
Such plots are cumbersome to represent, however; for this reason the dispersion relation is usually given as

a piecewise plot around the edge of the first irreducible segment of the Brillouin zone, as shown in Fig. 2.

We note that in any such two-dimensional plot the path of kbloch is always fixed, and so the two-variable

problem which we introduced originally is in fact a problem for a single variable, which we can label k.

There are many methods available for calculating the dispersion relations. For the purpose of demon-

strating our search procedure we employ a multipole method [6] often known as �the Rayleigh method�,
which uses a decomposition of the field into regular and irregular cylindrical functions in order to obtain

a matrix identity for the propagating modes. This procedure has the advantage that it is semi-analytical, in
that it gives a solution in terms of analytical functions, and this makes analysis of the method relatively
. Dispersion curves for a two-dimensional array of perfectly conducting circular cylinders, with radius r = 0.40d. The lowest

ic band-gap region is shaded in grey. The inset shows the first irreducible octant of the Brillouin zone. This curve was produced

Algorithm 3 with a very small step size.
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transparent. In order to arrive at the solution, however, one must solve a particulary dense complex-valued

matrix, of the form
Aðx; kblochÞx ¼ 0; ð6Þ

where x is a vector which contains all the multipole coefficients in the expansion of the propagating mode.

A dispersion diagram such as the one shown in Fig. 2 can have several interesting characteristics. First,

the slope of any dispersion curve dx/dk defines the group velocity in the material. The diagram may also

exhibit the presence of photonic band-gaps, or regions of frequency where light cannot propagate. Some

researchers have also proposed that light in such a periodic structure will behave in similar ways to an elec-

tron in a semiconductor, with the second derivative d2x/dk2 near the band edge playing the role of the pho-

ton�s effective mass. These features are important for researchers attempting to create novel devices based

on photonic crystals, and it is important to have algorithms which can compute these characteristics reli-
ably and efficiently. The approaches presented in the next section enable the computation of dispersion

curves, as well as their higher-order derivatives, in an elegant and stable manner.
3. Nonlinear inverse iteration and the implicit determinant method

In this section, we discuss some numerical algorithms for the solution of nonlinear eigenvalue problems.

Nonlinear inverse iteration and techniques derived from Newton�s method have been in use since the early
1960s (see, for example [15]). The method presented in [11], which we develop further here, is derived from

[19], where the use of bordered matrices to compute bifurcation points in nonlinear problems is introduced.

For completeness and to help understand fully the numerical approach, we provide a self-contained ac-

count here. In addition we introduce a variation on this method which in our experiments has a larger

domain of convergence. We first consider the problem of solving the eigenvalue problem for a specific Bloch

vector. Fixing kbloch, we write the system (6) in the form
AðxÞx ¼ 0; ð7Þ

where x is normalised by
xHx ¼ 1: ð8Þ

We denote solutions to (7) by x* with eigenvalues x*. Throughout the paper, we assume A(x) is a

smooth function of x and shall denote its derivatives by Ax(x), Axx(x), etc.
It is clear that an equivalent formulation of (7) is
detAðxÞ ¼ 0; ð9Þ

and since A is Hermitian, (9) represents a real function of the real variable x. Our problem is then one of

finding zeros of a real valued function.

Assume that x(i) is an estimate of x*. It is natural to try Newton�s method to improve x(i). The value of

detA(x(i)) is found simply by an �LU�-type factorisation for Hermitian matrices (e.g., using the Bunch–

Kaufman algorithm [18]), however, it is not so easy to find an efficient formula to evaluate
d

dx
ðdetAðxðiÞÞÞ:
For example, Liouville�s formula
d

dx
ðdetAðxÞÞ ¼ traceðA�1ðxÞAxðxÞÞ detAðxÞ
requires knowledge of the elements of A�1(x). This approach has been used in [3].
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Most numerical techniques for the solution of A(x)x = 0 are extensions of inverse iteration for the stand-

ard eigenvalue problem [14], or are variations of Newton�s method (see, for example [13,12,23]). Indeed,

since there is an intimate connection between inverse iteration and Newton�s method [24] several methods

can be derived using both approaches. One such algorithm, discussed in [23], is as follows:

Algorithm. (Nonlinear inverse iteration) Given (x(i),x(i)) with xðiÞ
H

xðiÞ ¼ 1:

(i) Solve: A(x(i))y(i + 1) = �Ax(x
(i)) x(i).

(ii) Rescale: x(i + 1) = y(i + 1)/iy(i + 1)i2.
(iii) Update x:
xðiþ1Þ ¼ xðiÞ � xðiþ1ÞHAðxðiÞÞxðiþ1Þ

xðiþ1ÞHAxðxðiÞÞxðiþ1Þ
:

(iv) Repeat until convergence.

It is shown in [23] that this method has quadratic convergence provided the nondegeneracy condition
x�HAxðx�Þx� 6¼ 0 ð10Þ

holds. It is also shown in [23] that (10) implies
d

dx
ðdetAðx�ÞÞjx¼x� 6¼ 0; ð11Þ
that is, detA(x) crosses through zero with non-zero velocity at x = x*. (Note, this is a different

nondegeneracy condition from the requirement that A(x) has a simple zero eigenvalue at x* as implied

by (12).)

3.1. Derivation of the implicit determinant algorithm

In this section, we introduce an approach to the solution of (9), which we call the ‘‘implicit determinant

method’’. This is motivated by the use of bordered systems from numerical bifurcation derived in [19],

and has links with the idea of ‘‘test functions’’ to detect singularities in nonlinear problems (see, for example,

[22]). The idea is to set up a scalar problem, f(x) = 0, that has the same roots as (9) but where fx(x) is easy to
evaluate so that Newton�s method is readily implemented. This idea was also explored in [11], where numer-

ical aspects of various possible implementations are also discussed. Here, we present a self-contained account

specialised to the Hermitian case, which allows some simplification and amore direct physical interpretation.
The main theoretical tool is the following lemma:

Lemma 1. Let (x*,x*) solve (7) and (8) with A(x) Hermitian. Assume that zero is a simple eigenvalue of

A(x), so that,
ðaÞ dim NullAðx�Þ ¼ 1: ð12Þ

For some b 2 Cn assume
ðbÞ bHx� 6¼ 0: ð13Þ

Then the (n + 1) · (n + 1) matrix M(x) defined by
MðxÞ ¼
AðxÞ b

bH 0

� �
is nonsingular at x = x*.
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Proof. The result follows if we can show that
Aðx�Þ b

bH 0

� �
p

q

� �
¼

0

0

� �
ð14Þ
implies that p = 0 and q = 0. The first row of (14) gives A(x*)p + bq = 0, and left multiplication by x*H

gives x*HA(x*)p + x*Hbq = 0. The first term is zero since A(x*)x* = 0, so q = 0 using (13). Hence

A(x*)p = 0 which implies, using (12), that p = ax*, for some scalar a. The second row of (14) gives

abHx* = 0, which implies a = 0 using (13) and hence p = 0. (This result is a special case of Lemma 2.8 of

[21].) h

First, note that since M(x*) is nonsingular then M(x) is nonsingular for x near x* because A(x) is a
smooth function of x. Throughout this paper we will assume that M(x) is always nonsingular and that

any b satisfies (13). We return to the question of the optimal choice of b later. It is common to refer to

M(x) as a bordered matrix.
Next, for x near x* and b satisfying (13) we introduce the linear system
AðxÞ b

bH 0

� �
x

f

� �
¼

0

1

� �
: ð15Þ
Since the matrix is nonsingular, x and f are smooth functions of x and so we write x(x) and f(x). Cramer�s
rule (see, for example [20, p. 414]) gives
f ðxÞ ¼ detAðxÞ
detMðxÞ ð16Þ
and note that since A(x) and M(x) are both Hermitian then f(x) is real. The reason for introducing (15) is

now clarified. Since detM(x) is nonzero then f(x) = 0 if and only if detA(x) = 0, and the essence of our

method is to seek zeros of f(x) rather than detA(x). For completeness we state the following ‘‘equivalence’’

result.

Theorem 1. Assume the conditions of Lemma 1 hold and that f(x) and x(x) are given by (15). Then

(a) f(x) = 0 if and only if det A(x) = 0.
(b) For x = x*,x(x*) obtained from (15) is a null vector of A(x*).

Proof. The result of (a) was given above. Since f(x*) = 0, the first row of (15) becomes A(x*) x(x*) = 0.

Hence x(x*) is a scaled form of x* (but will not be a unit vector since bH x(x*) = 1 rather than x(x*)H

x(x*) = 1). h

The ‘‘implicit determinant method’’ is precisely the application of Newton�s method to f(x) defined by

(15). To do this we need to be able to evaluate fx(x) and this is accomplished readily as follows. Differen-

tiating (15) with respect to x gives
AðxÞ b

bH 0

� �
xxðxÞ
fxðxÞ

� �
¼ �

AxðxÞxðxÞ
0

� �
ð17Þ
and so fx(x) is computed by solving a linear system with the same matrix as in (15) but with a different

right-hand side. This leads to the following algorithm:
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Algorithm 1. (Implicit determinant) Given x(0) and b 2 Cn such that M(x(0)) is nonsingular:

(i) Solve (15) with x = x(i) to find f(x(i)).

(ii) Solve (17) with x = x(i) (using x(x(i)) obtained from (i) on the right hand side) to find fx(x
(i)).

(iii) Perform a Newton update:
xðiþ1Þ ¼ xðiÞ � f ðxðiÞÞ=fxðxðiÞÞ: ð18Þ

(iv) Repeat till convergence.

Assuming Ax(x
(i)) is easily evaluated, the computation of fx(x

(i)) requires very little extra over the eval-

uation of f(x(i)) and the main cost in one Newton step is the �LU� factorisation of the matrix on the left-
hand side of (15). This has the same complexity as the evaluation of detA(x(i)).
3.2. Convergence of the method

Standard Newton theory says that this algorithm will converge quadratically provided fx(x*) 6¼ 0. The

following lemma gives a nondegeneracy condition that ensures this condition.

Lemma 2. Assume the conditions of Lemma 1. Then

(a) fx(x*) 6¼ 0 if and only if x(x*)HAx(x*)x(x*) 6¼ 0.

(b) If x(x*)HAx(x*)x(x*) 6¼ 0 the implicit determinant method converges quadratically.

Proof. The first equation of (17) shows that
bfxðxÞ ¼ �AxðxÞxðxÞ � AðxÞxxðxÞ: ð19Þ
Multiplication on the left by x(x)H gives
fxðxÞ ¼ �xðxÞHAxðxÞxðxÞ þ bHxxðxÞf ðxÞ ¼ �xðxÞHAxðxÞxðxÞ;
where we have used x(x)Hb = 1 and bHxx(x) = 0. Evaluation at x = x* gives the result stated in (a). Since

f(x*) = 0, fx(x*) 6¼ 0, x* is a simple root and hence Newton�s method converges quadratically for a close
enough starting guess. h

We note that manipulation of the first equation of (15) shows
f ðxÞ ¼ �xðxÞHAðxÞxðxÞ

and so the formula (18) can be written as
xðiþ1Þ ¼ xðiÞ � xðxðiÞÞHAðxðiÞÞxðxðiÞÞ
xðxðiÞÞHAxðxðiÞÞxðxðiÞÞ

; ð20Þ
which is very similar to the correction formula in the inverse iteration algorithms in [12,23], though

the x(x(i)) vectors are calculated using a nonsingular system and depend on the choice of b. We note

that, not surprisingly, the condition for quadratric convergence in the implicit determinant method is
precisely that given by equation (10), which is also needed for nonlinear inverse iteration to converge

quadratically.
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3.3. Numerical results

In Table 1, we illustrate the convergence of the implicit determinant algorithm (Algorithm 1), and com-

pare it to the convergence of the inverse iteration method. In both cases the same initial estimate has been

used: if we represent the solution eigenvector x* as a set of complex numbers in decreasing order of mag-
nitude, then for inverse iteration the initial estimate was x(0) = (1,0,0, . . ., 0), and for Algorithm 1 the initial

estimate is given by b = (1,0,0, . . ., 0). For the first three iterations the ratio (x(i + 1) � x*)/(x(i) � x*)2 re-
mains roughly constant, showing that the convergence is quadratic for both inverse iteration and for

Algorithm 1. For iterations i = 3,4,5 this quantity can no longer be reliably computed using 32 bit

precision.

In the example given in Table 1, it should be noted that we have chosen a �reasonable� starting value for

x(0), since it is known on physical grounds that the multipole coefficients decay with increasing order. We

would expect additionally that the convergence of the implicit determinant algorithm depends on the choice
of the vector b. To see how this is so, we present additional calculations for the convergence when

b = (0,1,0,0, . . .) and when b = (0,0,1,0, . . .). These are depicted in Table 2. We can see that Algorithm 1

maintains quadratic convergence for these different values of b, however, the asymptotic coefficients

change, and we see that the choice of b can affect the rate of convergence.

3.4. An improved algorithm

It is clear from the above discussion and numerical results that the implicit determinant algorithm de-
pends on the choice of b. We now discuss the optimal choice for b and hence derive an improved implicit

determinant algorithm.

First, applying Cramer�s rule to (17) we obtain
1 W

used in

algorit
fxðxÞ ¼
detDðxÞ
detMðxÞ ; ð21Þ
where we introduce a new bordered matrix D(x) 1
DðxÞ ¼
AðxÞ �AxðxÞxðxÞ
bH 0

� �
: ð22Þ
Thus from (16) and (21) the Newton correction equation (18) can be written as
xðiþ1Þ ¼ xðiÞ � detAðxðiÞÞ
detDðxðiÞÞ ð23Þ
and it seems clear that it is a good idea to choose b in (15) and (17) to minimise the correction to x(i), that is,

b should be chosen to maximise |detD(x(i))|. We show in Appendix Athat at the root x*, |detD(x*)| is max-

imised if b is chosen in the direction x*. Since this is unknown in practice, this suggests that we choose b as

our current best guess, namely, as (normalised) x(x(i)). This choice is reinforced by the fact, also proved in
Appendix A, that this choice for b also maximises |detM(x*)|. Thus we obtain the following improved

algorithm:
e note that the matrix D(x) is not used in practice, rather it is only used in the discussion of how best to choose b. It is, however,

the evaluation of derivatives in [10], but we do not utilize it here since it would destroy the Hermitian character of the

hm.



Table 2

Illustration of the convergence of Algorithm 1, given for b = (0,1,0,0, . . .) and b = (0,0,1,0, . . .)

i b = (0,1,0,0, . . .) b = (0,0,1,0, . . .)

x(i) � x* (x(i + 1) � x*)/(x(i) � x*)2 x(i) � x* (x(i + 1) � x*)/(x(i) � x*)2

0 0.07765013345804 2.29796743715589 0.07765013345804 8.96340344231721

1 0.01385569399439 2.27184085966440 0.05404522850799 8.96865470107751

2 0.00043614858998 2.31215061099929 0.02619642445283 8.97879754809233

3 0.00000043983022 – 0.00616172364812 8.99092203676799

4 0.00000000000948 – 0.00034135688328 9.05101178868019

5 0.00000000000000 – 0.00000105466482 –

6 0.00000000000000 – 0.00000000003169 –

7 0.00000000000000 – 0.00000000000000 –

Table 1

Comparison of the convergence of the inverse iteration method with Algorithm 1, starting at a point w(0) � w* � 0.08

i Inverse iteration Algorithm 1

x(i) � x* (x(i + 1) � x*)/(x(i) � x*)2 x(i) � x* (x(i + 1) � x*)/(x(i) � x*)2

0 0.07765013345804 2.03893280938146 0.07765013345804 �2.97412410440143

1 0.01229383350918 2.05758075807715 �0.01793260984713 �3.09013884544107

2 0.00031097934503 2.12218663769713 �0.00099372220213 �3.09342861476209

3 0.00000020523275 – �0.00000305471069 –

4 0.00000000000430 – �0.00000000009147 –

5 �0.00000000000001 – 0.00000000000000 –
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Algorithm 2. (Improved implicit determinant) Given xð0Þ 2 Cn and x(0) such that, with b = x(0), M(x(0)) is

nonsingular. For i = 0,1,2, . . .

(i) Solve (15) with b = x(i) and x = x(i) to find f(x(i)).

(ii) Solve (17) with b = x(i) and x = x(i) to find fx(x
(i)).

(iii) Newton update:
xðiþ1Þ ¼ xðiÞ � f ðxðiÞÞ=fxðxðiÞÞ

and
xðiþ1Þ ¼ xðxðiÞÞ:

(iv) Repeat till convergence.

The work done in this algorithm per step is the same as for Algorithm 1.

One can think of Algorithm 2 as a ‘‘hybrid’’ Newton method to find a zero of detA(x). At each step of

the iteration a scalar function f is derived that depends on x(i � 1) and has a zero at x*. Then one step of
Newton�s method with this particular f is carried out. That gives one step of a quadratically convergent

method to find x, i.e. x* � x(i + 1) = O((x* � x(i))2). At the next step a new b, namely b = x(i), determines

a new f and one step of Newton�s method is again performed. Overall we clearly maintain a quadratically

convergent algorithm as is seen in Table 3. We also see that Algorithm 2 gives significantly better results

than Algorithm 1, even though both exhibit quadratic convergence.



Table 3

Comparison of the convergence Algorithm 1 and Algorithm 2, starting at a point 0.3 from w*

i Algorithm 1 Algorithm 2

x(i) � x* (x(i + 1) � x*)/(x(i) � x*)2 x(i) � x* (x(i + 1) � x*)/(x(i) � x*)2

0 0.30765013345804 �2.44856034347227 0.30765013345804 �2.44856034347227

1 �0.23175281982956 �3.18330823140392 �0.23175281982956 �0.45975723097739

2 �0.17097347802953 �3.17293879345678 �0.02469327099838 0.37700508905504

3 �0.09275112530593 �3.14288138516662 0.00022988173058 0.14735698976490

4 �0.02703748960838 �3.09782306170899 0.00000000778717 –

5 �0.00226458871925 �3.08309382065328 0.00000000000016 –

6 �0.00001581122140 �4.37217188979223 �0.00000000000001 –

7 �0.00000000109302 – 0.00000000000000 –

8 �0.00000000000003 – 0.00000000000000 –

9 0.00000000000000 – 0.00000000000000 –
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The convergence of each algorithm still depends on the initial choice for the vector b. A ‘‘sensible choice’’

would be one in which bH is not orthogonal to the nullvector x. This is equivalent to making an ‘‘educated

guess’’ on physical grounds as to what the solution vector should roughly look like. A poor choice would

result in an ill-conditioned bordered matrix M. In the context of computing dispersion curves, where the

Bloch parameter k is continuously varied, an appropriate b would be the x calculated from the previous

parameter value.
The domains of convergence for a typical value of kbloch (in this case, kbloch = (p/2,p/2)) are shown in

Fig. 3. In this example, we have increased the distance between the original guess x(0) and the final x*,
and counted the number of iterations each algorithm takes to converge to the correct solution; if after

50 iterations the algorithm had not converged to x* the procedure was terminated. One can see that non-

linear inverse iteration and Algorithm 1 possess a similar domain of convergence and that both possess
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Fig. 3. The domain of convergence of nonlinear inverse iteration (dashed line), Algorithm 1 (dotted line), and Algorithm 2 (solid line),

for a Bloch vector half-way along the CM curve shown in Fig. 2. The arrow indicates the final solution x*d/c.
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isolated basins far removed from the final solution. This is in contrast to Algorithm 2, which exhibits a very

wide domain of convergence around the solution. We conclude that Algorithm 2, the Improved implicit

determinant method, will behave more robustly in situations where the root is difficult to find. This may

have implications on the decision of which algorithm to employ when computing dispersion curves, as is

done in the following section.
4. The two parameter problem – computation of the band structure

We now consider two parameter problems of the form
Aðx; kÞx ¼ 0; ð24Þ

where k is a second real parameter. An interesting and important application of the preceding work lies in

the ability to compute paths in the (x,k) plane quickly and efficiently. Specifically, we wish to compute a

path in the (x,k) plane such that
detAðx; kÞ ¼ 0: ð25Þ

Here, we have chosen k to be the Bloch vector as outlined in Section 2, however, it should be emphasised

that k can in fact represent any other real parameter, such as inclusion radius, refractive index, or length of
the unit cell.

The path-following problem can be stated as follows: Assume there is a solution at (x1,k1). We then seek

a solution at (x2,k2) where k2 = k1 + Dk, where Dk is small (see Fig. 4). We will see that the methodology of

Algorithms 1 and 2 provides a convenient framework for the calculation of the next step in the path, and in

fact that the terms in the Taylor series of the curve can be quickly and easily calculated without having

repeatedly to solve the matrix system.

For x near x* and b satisfying (13) consider the linear system of Section 3:
Aðx; kÞ b

bH 0

� �
xðx; kÞ
f ðx; kÞ

� �
¼

0

1

� �
: ð26Þ
It is been noted in Section 3 that there is an equivalence between the zeros of the determinant of A(x,k) and
the zeros of the function f(x,k). The problem then is one of computing the points on the path for which
f ðx; kÞ ¼ 0: ð27Þ
ω2

.
.

Q

P

k

ω

.

1 k2

ω
2

ω1

k

Fig. 4. Schematic to illustrate the approximation of (x2,k2) by ðx̂; k2Þ.
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Differentiating this equation with respect to k, we find that
fx
dx
dk

þ fk ¼ 0 ð28Þ
and so
dx
dk

¼ � fk
fx

: ð29Þ
The group velocity at the particular point on the dispersion curve can then be calculated, provided that

the derivatives fx and fk can be evaluated. If either of Algorithms 1 or 2 has been used to arrive at the

previous point, then fx is already given from the solution to Eq. (17). To find fk we use
Aðx; kÞ b

bH 0

� �
xkðx; kÞ
fkðx; kÞ

� �
¼ �

Akðx; kÞxðxÞ
0

� �
: ð30Þ
The matrix on the left-hand side has already been factorized in the previous step, and so only back-

substitutions are necessary to solve the system (30). The matrix Ak(x,k) must still be evaluated, however;

depending on the formulation of the physical problem this may have a simple relationship to the original
matrix A(x,k). In most cases, including the one examined here, the relationship is not straightforward and

so Ak is perhaps best computed using a finite difference step.

This suggests the following ‘‘path following algorithm’’:

Algorithm 3. (Path following) Given (x1,k1) satisfying f(x1,k1) = 0 and a given step-size Dk:

(i) Solve (17) and (30) to compute fx and fk.

(ii) Set k2 = k1 + Dk.
(iii) Set x̂2 ¼ x1 � Dk fk

fx
.

(iv) Newton update: Apply Algorithm 2 to f(x,k2) = 0 defined in (26) using x̂2 as a starting value for x2.

This algorithm has been tested and shows considerable time improvement for our current problem over

more direct methods for computing the path, such as successive solves for the determinant using BRENT.

There is also an improvement over the nonlinear inverse iteration algorithm in terms of the time taken to

complete a given path in the (x,k) plane, however, because both methods exhibit quadratic convergence

(and because the dispersion curves do not bend rapidly) the time improvement is small. The clear advantage
of Algorithm 3 is that it does not rely on the ability to solve a near-singular system, as does nonlinear

inverse iteration. In addition it provides an elegant framework for the organisation of the computer

code.
4.1. Higher-order derivatives and Taylor series

One can easily extend the implicit determinant algorithm to compute higher-order derivatives of x with

respect to k on the path; this has applications for determining the shape of the dispersion surface, or for
more efficient computation of dispersion curves. We see that once again the derivatives depend only on

the derivatives of the matrix A(x,k) with respect to k and x. Moreover, the computation of these deriva-

tives involves only back-substitutions into an already factorized system.

Differentiating (28) with respect to k we see that
fxx
dx
dk

� �2

þ 2f xk

dx
dk

þ fx
d2x

dk2
þ fkk ¼ 0: ð31Þ
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Re-arranging, we obtain
d2x

dk2
¼ � 1

fx
fxx

dx
dk

� �2

þ 2f xk

dx
dk

þ fkk

" #
: ð32Þ
To compute the second and higher derivatives of f one merely differentiates (26) the appropriate number

of times. For example, to compute fkk one solves the following equation:
Aðx; kÞ b

bH 0

� �
xkkðx; kÞ
fkkðx; kÞ

� �
¼ �

2Akðx; kÞxk þ Akkðx; kÞx
0

� �
: ð33Þ
Once again the work has been reduced to finding the higher-order derivatives of the matrix A(x,k), and
performing back-substitutions into an already factorized matrix. The calculation of mixed derivatives is

also straightforward; for example, to compute fxk one simply differentiates (17) with respect to x in order

to find the appropriate matrix equation.

The higher-order derivatives often possess important physical meanings – for example, the first deriva-
tive dx/dk corresponds to the group velocity of a pulse moving through the medium. They can also be used

to formulate a higher-order difference scheme for even faster computation of the curve by computing a sec-

ond-order correction to x̂2 at step 3 of Algorithm 3. In addition, the higher-order derivative fxx could be

used in the application of Leguerre�s method, which has cubic convergence, for an even faster computation

of x*.
Alternatively, the Taylor series of the dispersion curves can be computed directly from derivatives of the

matrix, rather than from repeated solves to find the first few points on the curve. This gives enormous

advantages in several situations: if the matrix is difficult to solve or expensive to evaluate, if only a rough
characterisation of the dispersion curves is necessary, or if it is only necessary to calculate the curve in the

vicinity of certain (typically symmetry) points.

We present an example of this in Fig. 5. For the lower-order dispersion curve at kbloch = (p/2,0), we have
computed that x = 1.215059, dx/dk = 0.700711 and d2x/dk2 = �0.25142. The dispersion curve can then be

approximated by the equation
xðkÞ ¼ ð1:215059Þ þ ð0:700711Þðk � p=2Þ þ 1

2
ð�0:251420Þðk � p=2Þ2: ð34Þ
This curve is given by the solid line in Fig. 5. At the point kbloch = (3.0916,0), we compute x = 1.89345,

dx/dk = �3.58381e � 2 and d2x/dk2 = �0.84536, leading to the equation
xðkÞ ¼ ð1:89345Þ þ ð�3:58381e� 2Þðk � 3:0916Þ þ 1

2
ð�0:84536Þðk � 3:0916Þ2: ð35Þ
These approximations have been directly compared with a step-by-step solution using Algorithm 3, solving
for 20 points in succession (crosses in Fig. 5). Although the approximations involve only one matrix solve

and five back-substitutions one can see in Fig. 5 that they fit quite well to the more laborious path-following

computation over a reasonable range of frequencies.

In the vicinity of the C point, the slope of the dispersion curve is related to the homogenisation properties

of the material, i.e. the effective properties of the material at long wavelengths. Specifically, one defines the

effective refractive index of the periodic material as
lim
x!0

N eff ¼
dk
dx

: ð36Þ
For dilute composites this value will be very close to the approximation of Maxwell-Garnett [17], how-

ever, when the filling fraction of the inclusions becomes large the calculation of this quantity is not so

straightforward; one can then directly calculate the effective refractive index of a given periodic material
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Fig. 5. The dispersion curve computed using Algorithm 3 along the CX segment of the Brillouin zone is represented by the sequence of

crosses. The solid and fine dotted lines show the Taylor series expansions given by Eqs. (34) and (35). The circles represent the points

about which the expansions are constructed.
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using a numerical method together with the procedure outlined above. In addition, the second derivative

d2k/dx2 gives an error estimate for the effective refractive index as a function of the frequency. This is very

useful for researchers who would like to know the range of validity of their effective medium model.
It is worth noting that Algorithm 3 can also be applied to any real parameter of the problem. For exam-

ple, if one wants to compute the dispersion surface, one must compute x for each value of the Bloch vector

kbloch = (kx,ky). The procedure outlined above gives a simple way of computing the derivatives ox/okx,
ox/oky, o

2x/(okxoky), . . . The dependance of x at critical points (say, at the edge of the band-gap) or on

other variables such as the refractive index and the radius can also be easily computed. In each case the

calculation reduces to a set of back-solves into systems such as (30) which have already been factorized

by the root solving procedure.
5. Conclusion

We have described an approach to the solution of nonlinear eigenvalue problems which arise in the com-

putation of photonic band structures in two-dimensional periodic materials such as photonic crystals. In

doing so, we have examined various methods for the solution of nonlinear eigenvalue problems and applied

them to this physical situation. One of these methods, the so-named implicit determinant algorithm, we

have re-formulated for Hermitian systems and developed a variation which shows improvements not only
in speed but also in domain of convergence. The reasons for this have been analysed. We have also shown

the advantage of these methods in calculating high-order derivatives which can be used to efficiently com-

pute dispersion curves.
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Appendix A

In this appendix, we prove the two results on |detM(x*)| and |detD(x*)| that are used in the discussion

on the optimal choice of b in the paper.

Denote the eigenvalues and orthonormalised eigenvectors of A(x*) by (lj,vj), j = 1, . . .,n, so that l1 = 0
and lj 6¼ 0, for j = 2, . . .,n, since zero is a simple eigenvalue of A(x*). Also, vHi vj ¼ di;j, and the solution x*

obtained from solving (15) at x = x* satisfies x* = a v1 with a = (bHv1)
�1. We have the following lemma:

Lemma A.1. Given that the conditions of Lemma 1 hold with bHb = 1 and bHx* = 1. Then

(a) j detMðx�Þj ¼ jvH1 bj
2jPn

j¼2ljj: ðA:1Þ

(b) The choice b = v1 maximises |detM(x*)| over all b satisfying bHb = 1.

Proof. First expand b in terms of the eigenvectors of A(x*) to give b ¼
Pn

j¼1bjvj, with bj ¼ vHj b. In partic-

ular b1 ¼ vH1 b. Note that |bj| 6 1 since
Pn

j¼1jbjj
2 ¼ 1. Now A(x*) = VKV H, where K = Diag{0,l2, . . .,ln}, a

real diagonal matrix, and V is the matrix of eigenvectors of A(x*). Thus
Aðx�Þ b

bH 0

� �
¼

V 0

0H 1

� �
K b

bH 0

� �
V H 0

0H 1

 !
;

where (b)i = bi and b = Vb. Since V is an orthogonal matrix (and so detV = 1) it follows that
detMðx�Þ ¼ det
K b

bH 0

� �
¼ ð�1Þnþ1jb1j

2jPn
j¼2ljj
from which the result (A.1) follows. To prove (b) note that the determinant is maximised for

b1 = 1,bj = 0,j = 2, . . .,n which arises for the choice b = v1. h

An extension of this lemma is the following result.

Corollary A.1. Let
DðxÞ ¼
AðxÞ �AxðxÞxðxÞ
bH 0

� �
:

Then
j detDðx�Þj ¼ jbHv1j2jx�HAxðx�Þxðx�ÞjjPn
j¼2ljj; ðA:2Þ
and the choice b = v1 maximises |detD(x*)|.

Proof. First write �AxðxÞxðxÞ ¼
Pn

j¼1djvj ¼ V d, with dj ¼ �vHj AxðxÞxðxÞ. Now, as in the proof of the

above lemma, we write
Dðx�Þ �AxðxÞxðxÞ
bH 0

� �
¼

V 0

0H 1

� �
K d

bH 0

� �
V H 0

0H 1

 !
;

and so
detDðx�Þ ¼ ð�1Þnþ2ðbHv ÞðvHA ðx�Þxðx�ÞÞjPn l j: ðA:3Þ
1 1 x j¼2 j
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Then, with v1 = a�1x(x*), we have
j detDðx�Þj ¼ jaj�2jx�Hbjjx�HA0ðx�Þx�jjPn
j¼2ljj; ðA:4Þ
and since bHx* = 1 and a = (bHv1)
�1 we have the result (A.2). Note that all the terms on the right-hand side

of (A.2) are real, so detD(x*) is real as expected. h
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